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In this paper the application of the two-dimensional boundary element method
to the scattering of plane sound waves from an infinite cylinder in a fluid is
presented. The acoustic equation of the wave motion in a barotropic, inviscid fluid
is deduced from the linearized hydrodynamics equations and the linearized
equation of state, while the wave motion inside the solid is described by two
different models. Two sets of boundary integral equations are presented for
modelling the interaction of fluid–fluidlike and fluid–solid problems. Several test
examples are presented to demonstrate the accuracy of the proposed
formulations. Comparison with available analytical results, as well as numerical
results for different sizes and positions of the internal boundary are given. Farfield
coefficients and the results of the scattering cross-section demonstrate the different
behaviour of the two models and the influence of the internal boundary.
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1. INTRODUCTION

Scattering of acoustic and electromagnetic waves are important in many
engineering fields such as mechanics and aeronautics among others. It can give
important information about the internal composition of solids and fluids. For
example, in non-destructive testing one can obtain information about internal
inhomogeneities, non-symmetries and defects from the scattering pattern.

There are several applications of the finite element method to scattering
problems and in particular electromagnetic scattering. To overcome the inability
to deal with open field scattering problems, the finite element method has always
been coupled with analytic or other numerical methods, for example, with the
bymoment method [1], modal expansion [2], adsorbing boundary condition [3, 4],
and boundary integral equations [5, 8].

0022–460X/98/380413+22 $30.00/0 7 1998 Academic Press



.   . . 414

The boundary element method has been successfully applied in many problems
involving infinite domains [9–12]. Its important advantages are that the solution
space is one dimension lower than that of the geometry, and that the Green’s
function-based integral kernels implicitly assure the satisfaction of the
Sommerfield radiation condition. Contributions to the acoustic scattering problem
in the case of an impenetrable obstacle can be found in references [13–17].

Acoustic scattering with coupling conditions on the interface has been solved
in 3-D by Seybert et al. [18, 19], Goswami et al. [20] but no applications in 2-D
have been reported.

In this paper, the two-dimensional boundary element method is applied for the
first time to solve the coupled problem for two different types of obstacle. In both
cases an acoustic incident incoming wave is scattered by an obstacle. The main
difference between the 2-D and 3-D applications, apart from the discretization
procedures, is the complexity of the fundamental solutions in the two-dimensional
problem.

In the first part, the obstacle is modelled by the Helmholtz equation as a fluid,
i.e., it is not able to support shear waves. The external and internal scalar fields
are coupled on the interface by their respective pressures and fluxes.

In the second part, the scatterer’s field is governed by the Navier–Cauchy
equation, i.e., longitudinal and transverse waves are present inside, with
displacements and tractions coupled on the interface with the external scalar
quantities.

To demonstrate the efficiency of the method, numerical examples are presented
for a configuration for which any analytical solution is available.

In order to compare the results of the two models, the examples refer to the same
scatterer (brass). It has to be pointed out that the first model does not describe
in a physically efficient way the scatterer whose transverse wave velocity is
comparable to the longitudinal wave velocity. However, it can be used for
materials, like rubber, characterised by the low value of the Lamé constant m and,
of course, for fluid.

2. FLUID–FLUIDLIKE SCATTERING

2.1.   

The model consists of the coupling of two sets of integral equations which
represent respectively the response of an obstacle and the acoustic behavior of the
fluid in the presence of an incident beam. The two equations are coupled by
enforcing continuity of normal components of velocities and equilibrium of
pressures along the interface. The obstacle response is characterised by the internal
pressure pi , while the external behaviour is characterised by the total pressure pe .
The total pressure is taken as the sum of the incident pinc and scattered psc pressure,
i.e.,

pe (x)= pinc (x)+ psc (x).

The scattered pressure psc satisfies the Sommerfield radiation condition at infinity
[21].
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Consider the problem shown in Figure 1, where Ve is the exterior medium
carrying the incident beam pinc (x), Vi is the interior domain with the cavity, Ge is
the interface between Ve and Vi , and Gi is the internal boundary.

Considering time-harmonic analysis, the variation exp(−ivt) is assumed for all
the field variables, with v being the circular frequency (v=2pf) in radians per
second, i=z−1 and t is the time. For this linear steady state problem, pi , pinc ,
and psc all satisfy the Helmholtz wave equation, that is

D2p(x)+ k2p(x)=0, (1)

k= ke for x$Ve , k= ki for x$Vi ,

where ke and ki are the external and internal wave numbers, respectively. They are
given as

ke =
v

ce
ce =external wave speed, ki =

v

ci
ci =internal wave speed.

At the interface Ge , the external and internal pressure and flux satisfy the boundary
conditions given by

pe (x)= pi (x),
1
re

qe (x)=−
1
ri

qi (x), (2)

where re and ri are external and internal densities, respectively. The external and
internal fluxes can be defined as

qe (x)=
1pe (x)
1ne (x)

, qi (x)=
1pi (x)
1ni (x)

.

On the internal boundary Gi one can choose either conditions, that is

q(x)=0 or p(x)=0. (3)

The boundary integral equations corresponding to the field equation (1) can be
written as

c(j)pe (j)+gGe

q*(j, x)pe (x) dGe (x)=gGe

p*(j, x)qe (x) dGe (x)+ pinc (j) (4a)

for the exterior problem, and

c(j)pi (j)+gG

q*(j, x)pi (x) dG(x)=gG

p*(j, x)qi (x) dG(x) (4b)

for the interior problem.
The integral equation (4a) is applied only to the interface Ge , while equation (4b)

is used for the whole boundary G=Ge *Gi .
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The points j, x are referred to as the source and field points, respectively, r is
the modulus of the vector (j− x) and p*(j, x), q*(j, x) are the fundamental
solutions characterising the response of a point disturbance in an infinite 2-D
domain, given as

p*(j, x)=
1
2p

K0(ikr)

q*(j, x)=−
ip
2p

K1(ikr)
1r

1n(x)
. (5)

The terms K0 and K1 are the zero and first order modified Bessel functions of the
second kind, respectively.

The coefficient c(j) depends on the local geometry of the boundary and is equal
to 1/2 for smooth boundaries. The singularities of the fundamental solutions
p(j, x) and q(j, x) are of O(ln r) and O(1/r), respectively, but the term 1r/1n
smooths the singularity in K1(ikr).

It should be noted that in using formulation (4a), some difficulties can be
encountered due to the presence of spurious results if k is near certain
characteristic frequencies (see reference [22]). The theory behind this problem is
quite complicated. It can be demonstrated that these characteristic frequencies are
the resonance frequencies (or the eigenfrequencies) of the auxiliary interior
Dirichlet problem.

It has to be pointed out that these frequencies have no physical meaning for
the exterior boundary value problem of equation (4a), which has a unique solution
for all frequencies. The non-uniqueness is a purely mathematical problem arising
from the boundary integral formulation rather than from the nature of the
physical problem.

Several modified integral formulations have been proposed to overcome the
non-uniqueness problem. The Combined Helmholtz Integral Equation Formu-
lation (CHIEF) proposed by Schenck uses equation (4a) with source points inside
the body as a constraint that must be satisifed along with the usual Helmholtz
integral equation on the boundary. The resulting overdetermined system may then
be solved by a least-square procedure. Another well known formulation is
proposed by Burton and Miller [23]. This approach consists of a linear
combination of the Helmholtz integral equation and its normal derivative: it has
been proved in reference [23] that the linear combination of these two equations
will yield a unique solution for all frequencies if the constant multiplying the
derivative equation is appropriately chosen. However, the major difficulty in this
formulation is that the normal derivative of the Helmholtz integral equation
involves a hyper-singular integral. In reference [23], Burton and Miller used a
double surface integral to regularise this strong singularity, but evaluation of a
double integral is computationally costly. Other regularisation techniques, such as
the work by Meyer et al. [24] and Terai [12], are valid for planar elements only.

The non-uniqueness problem is outside of the scope of this paper, which is to
measure the sensibility of the solution to the presence of an internal flaw and to
compare two different models of investigation. Therefore, it is assumed that the
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wave number k is far from every eigenfrequency of the interior Dirichlet problem
of the scatterer.

2.2.  

Assuming that the boundary G is discretized into EL=ELe +ELi elements, the
integral representations (4a) and (4b) can be written as

c(j�)pe (j�)+ s
ELe

l=1 gGl

q*(j�, x)pe (x) dG(x)= s
ELe

l=1 gGl

p*(j�, x)qe (x) dG(x)+ pinc (j�),

(6a)

c(j�)pi (j�)+ s
EL

l=1 gGl

q*(j�, x)pi (x) dG= s
EL

l=1 gGl

p*(j�, x)qi (x) dG. (6b)

The Cartesian co-ordinates of points located within each element Gl are
expressed in terms of shape functions f(z) and co-ordinates of nodal points, i.e.,

x= s
N

n=1

fn (z)xn ,

where N is the number of points necessary to define the geometry of the element
and z a dimensionless local co-ordinate varying in [−1, 1]. The unknown external
and internal pressures and fluxes along the boundary element are also
approximated over each element through interpolation functions b(z) and their
nodal values, in the form:

p(x)= s
M

n=1

fn (z)pn , q(x)= s
M

n=1

fn (z)qn ,

where M is the number of nodal points within the element.
Three types of boundary element are commonly used in 2-D analysis: constant,

linear and quadratic. The computer program developed allows for quadratic
isoparametric (fn = bn ) elements. Therefore, equations (6a) and (6b) can be
written as

c(j�)pe (j�)+ s
ELe

l=1

s
3

n=1 6g
+1

−1

q*(j�, x(z))fn (z)Jl (z) dz7pn
e

= s
ELe

l=1

s
3

n=1 6g
+1

−1

p*(j�, x(z))fn (z)Jl (z) dz7qn
e + pinc (j�) (7a)
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c(j�)pi (j�)+ s
EL

l=1

s
3

n=1 6g
+1

−1

q*(j�, x(z))fn (z)Jl (z) dz7pn
i

= s
EL

l=1

s
3

n=1 6g
+1

−1

p*(j�, x(z))fn (z)Jl (z) dz7qn
i (7b)

where Jl (z) is the Jacobian of the transformation and the shape functions are given
as:

f1(z)= 1
2z(z−1) f2(z)= (1− z)(1+ z) f3(z)= 1

2z(z+1).

The first equation is applied on the interface Ge , the second one on the boundary
G; the term c(j) takes the value 1/2 for all the nodes inside the elements, the value
u/2p, where u is the internal angle, for nodes on the extremes.

Equations (7a) and (7b) applied respectively on all nodes of Ge and G, represent
the uncoupled BIEs where the unknowns are external and internal pressures and
fluxes. They can be written in matrix form as

Hepe −Geqe = pinc , Hipi −Giqi =0. (8)

The vectors pe, qe and pi, qi collect the external and internal pressures and fluxes,
respectively.

The determination of these quantities requires a solution of the two discretized
sets of integral equations, after enforcing the boundary conditions (2) on Ge and
(3) on Gi .

The final system of equations can be written as

He 0 0 −Ge 0 pe pinc

0 Hi
GeGe

Hi
GeGi

0 −Gi
GeGe

pi
Ge

0

0 Hi
GiGe

Hi
GiGi

0 −Gi
GiGe

pi
Gi

= 0 ,G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j

I −I 0 0 0 qe 0

0 0
I
re

I
ri

0 qi
Ge

0

if q=0 is assumed on Gi , and

He 0 −Ge 0 0 pe pinc

0 Hi
GeGe

0 −Gi
GeGe

−Gi
GeGi

pi
Ge

0

0 Hi
GiGe

0 −Gi
GiGe

−Gi
GiGi

qe = 0 ,G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j

I −I 0 0 0 qi
Ge

0

0 0
I
re

I
ri

0 qi
Gi

0

if p=0 is assumed on Gi .
The matrix Hi

SQ is the submatrix of Hi generated when the source point belongs
to the boundary S and the integration element belongs to the boundary Q. The
same for the submatrices of Gi.
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The Bessel functions involved in the kernels are calculated using two different
series expansions [25], one for small arguments and the other for large arguments.
The limit between the two ranges is =zlim ==5, i.e., the value of the argument which
gives an error of the same magnitude for both expansions. The elements of H and
G are evaluated numerically by Gaussian quadrature with ten points, except when
the element contains the collocation point. In this case, following references
[26, 27], the fundamental solutions are divided into two parts, the static value and
the remaining part up to the dynamic one. In this way only the static part keeps
the singularity because the singularities of the static and the dynamic fundamental
solutions for r:0 are the same.

The diagonal term of the H matrix is evaluated by applying constant pressure
in the static case, taking into account that the coefficients c(j�) are the same in
statics and dynamics, and that when dealing with the infinite domain Ve the
integral over the external boundary Ga at infinity is not zero. The singular term
of the G matrix can be evaluated numerically using a special type Gaussian
integration formula with logarithmic weight function.

2.3.  

Consider a cylinder with an internal circular cavity, as shown in Figure 2; the
dimensions and the properties of the external fluid and those of the scatterer are
given in Table 1.

The incident wave considered is plane and is related to the polar co-ordinates
(r, u) of the generic point x by the following expression

pinc (x)= p0 exp[−iker cos (u− ainc )],

where ainc is the angle between the wave direction and the x1 axis.

Figure 1. Geometry of the problem.
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Figure 2. Geometry of the numerical examples.

In order to assess the accuracy of the coupled BEM formulation, two test
examples are considered for which analytical solutions are available. Figures 3 and
4 refer to the case of a circular cylinder with an internal central cavity
(Rcav =0·05R) immersed in water and scattering an incident plane wave with
direction ainc =0°. These figures compare the analytical and BEM results in the
case of keR=1 and keR=10, for both boundary conditions (3) on Gi .

The values reported give the farfield coefficient, defined as:

P(u)=$pker
2 %

1/2

psc (r, u) ei(p/4− ker).

T 1

Materials properties

Brass cylinder
Mass density r=8500 kg/m3

Young’s modulus E=10·5 · 1011 Pa
Poisson’s ratio n=1/3
Radius R=1·0 m

Acoustic medium: water
Mass density r=998 kg/m3

Sound speed c=1486 m/s
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Figure 3. Angular distribution =psc /pinc = for brass in water with central cavity. Fluidlike scatterer
keR=1: (a) zero flux on Gi ; (b) zero pressure on Gi . ——, Analytical solution; W, BEM solution.

normalised to the pressure of the incident wave and the factor [2/pker]1/2. This
coefficient is independent of r for r tending to infinity and is given in terms of the
value of the scattered pressure psc . Its value has been determined at r=100R.

The analytical solution [28] is not available in closed form, but is given in terms
of a series expansion in which the mth term involves the Bessel functions of the
first kind Jm and of the third kind Hm . In order to obtain a satisfactory stable
solution, the first 25 terms of the series solution and 20 terms of the expansion
of the Bessel and Hankel functions (see reference [25]) were taken into account.

The tests show that there is a good agreement between the boundary element
and the analytical solution. The BEM model consists of eight elements on Ge and
four on Gi in the case keR=1, and 28 elements on Ge and four elements on Gi in
the case keR=10. These values have been enough to obtain a numerical solution
with an error smaller than 1%.

Figure 4. Angular distribution =psc /pinc = for brass in water with central cavity. Fluidlike scatterer
keR=10: (a) zero flux on Gi ; (b) zero pressure on Gi . ——, Analytical solution; W, BEM solution.
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Figure 5. Fluidlike scatterer keR=1 and D=0·6R. — —, Rcav =0·0R; – – – –, Rcav =0·05R;
——, Rcav=0·01R; –r–r–r–, Rcav =0·005R.

The higher number of elements in the case keR=10 is due to a more unstable
solution. Further examples are given in Figures 5–10 where the behaviour of the
scattering cross-section (as defined in reference [29]) versus the incident wave’s
angle, is shown for different dimensionless wave numbers and different sizes and
positions of the internal cavity. In all these examples p=0 is the boundary
condition considered on Gi . The numerical response of the cylinder with internal
boundary can be used to characterise the size and position of the cavity.

Figure 6. Fluidlike scatterer keR=1 and Rcav =0·05R. — —, D=0·0R; – – – –, D=0·04R; ——,
D=0·06R; –r–r–r–, D=0·8R.
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Figure 7. Fluidlike scatterer keR=5 and D=0·6R. — —, Rcav =0·0R; – – – –, Rcav =0·005R;
——, Rcav=0·01R; ----, Rcav =0·05R.

In the case of different cavity sizes, increasing the wave number, the incident
angle, for which the scattering cross-section presents the maximum difference
between the solid with a cavity and the solid without a cavity, moves from 90°
towards 0°. The shape of the diagram is not influenced by the size of the cavity.

The scattering cross-section percentage difference between solid with cavity and
solid without cavity is in the range 0·5–5%.

Figure 8. Fluidlike scatterer keR=5 and Rcav =0·05R. — —, D=0·0R; ——, D=0·4R; - - - -,
D=0·6R; – – – –, D=0·8R.
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Figure 9. Fluidlike scatterer keR=10 and D=0·6R. — —, Rcav =0·0R; – – – –, Rcav =0·05R;
——, Rcav=0·01R; –r–r–r–, Rcav =0·005R.

The behaviour of the scattering cross-section is influenced differently by the
eccentricity of the cavity, for every dimensionless wave number. Whereas for
keR=1 the number of peaks is not modified by the position of the internal
boundary, for keR=5 and keR=10, this number changes with D.

Figure 10. Fluidlike scatterer keR=10 and Rcav =0·05R. — —, D=0·0R; – – – –, D=0·4R;
——, D=0·6R; –r–r–r–, Rcav =0·8R.
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Figure 11. Angular distribution =psc /pinc = for brass in water with central cavity. Elastic scatterer;
(a) keR=1; (b) keR=3. ——, Analytical solution; W, BEM solution.

3. FLUID–SOLID SCATTERING

3.1.   

In the case of an elastic obstacle, the external wave motion consists of the
incident compressional wave and a scattered compressional wave, while the wave
motion inside the scatterer includes a refracted compressional wave and a shear
wave. This last part did not appear in the previous situation. In the linear steady
state theory, the acoustic equation in the inviscid fluid is always represented by
the Helmholtz equation, while the waves inside the scatterer can be described by
the Cauchy–Navier equation. In the hypothesis of linear elasticity and the absence
of body force, one has

0k2
t

k2
l
−119(9 · u(x))+92u(x)+ k2

t u(x)=0, (9)

Figure 12. Angular distribution =psc /pinc = for brass in water with central cavity. Elastic scatterer;
(a) keR=5; (b) keR=10. ——, Analytical solution; W, BEM solution.
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Figure 13. Elastic scatterer keR=1 and D=0·06R. ——, Rcav=0·0R; –r–r–r–, Rcav =0·05R;
– – – –, Rcav =0·01R; — —, Rcav =0·005R.

where kl and kt are the longitudinal and shear wave numbers in the solid, given
by

kl =
v

cl
, kt =

v

ct
, cl =Xl+2m

ri
ct =Xm

ri
.

The terms cl and ct are the longitudinal and transverse wave velocity, respectively,
and l, m are the Lamé constants.

Figure 14. Elastic scatterer keR=1 and Rcav =0·05R. — —, D=0·0R; – – – –, D=0·4R; ——,
D=0·6R; –r–r–r–, D=0·8R.



20.80

20.40

20.50

20.60

20.70

20.30
200 40 60 80 100 120 140 160 180

inc

S
ca

tt
er

in
g

 c
ro

ss
-s

ec
ti

o
n

20.90

20.30

20.40

20.50

20.60

20.70

20.80

20.20
200 40 60 80 100 120 140 160 180

inc

S
ca

tt
er

in
g

 c
ro

ss
-s

ec
ti

o
n

  427

Figure 15. Elastic scatterer keR=5 and D=0·06R. ——, Rcav=0·0R; –r–r–r–, Rcav =0·05R;
- - - -, Rcav =0·01R; — —, Rcav =0·005R.

At the fluid–solid interface Ge , the pressures and fluxes p, q and the
displacements and tractions u, t satisfy the compatibility and equilibrium
conditions, i.e., continuity of normal components of velocities and equilibrium of
tractions

q(x)= rev
2u(x) · n(x), (10)

t(x)=−p(x)n(x),

Figure 16. Elastic scatterer keR=5 and Rcav =0·05R. — —, D=0·0R; –r–r–r–, D=0·4R;
– – – –, D=0·6R; ——, D=0·8R.
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Figure 17. Elastic scatterer keR=10 and D=0·06R. ——, Rcav=0·0R; –r–r–r–, Rcav =0·05R;
– – – –, Rcav =0·01R; — —, Rcav =0·005R.

where n denotes the normal pointing inward into the solid, u and t are the elastic
displacements and tractions, respectively.

The boundary integral equation corresponding to the governing equation (9)
can be written as

cij (j)uj (j)+−gG

Tij (j, x)uj (x) dG(x)=gG

Uij (j, x)tj (x) dG(x), (11)

Figure 18. Elastic scatterer keR=10 and Rcav =0·05R. — —, D=0·0R; – – – –, D=0·4R;
–r–r–r–, D=0·6; ——, D=0·8R.
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where −f stands for a Cauchy principal value integral, Tij (j, x) and Uij (j, x) are
the fundamental solutions characterising response of an infinite elastic medium to
a concentrated harmonic load of frequency v. They are respectively displacements
and tractions in the i direction for a unit harmonic load acting along the j direction.

In 2-D the expressions for Tij (j, x) and Uij (j, x) are the following

Uij =
1

2pric2
t
[cdij − xr,ir,j ],

Tij =
1
2p $0c,r −

1
r

x1(dijr,n + r,jni )

−
2
r

x(njr,i −2r,ir,jr,n )−2x,rr,ir,jr,n

+0c2
l

c2
t
−210c,r − x,r −

1
r

x1r,in,j%.
The functions c and x depend on the modified Bessel functions K0, K1 and K2 and
are given as

c=K0(iktr)+
1
ktr $K1(iktr)−

ct

cl
K1(iklr)%, x=K2(iktr)−

c2
t

c2
l
K2(iklr),

where kl =v/cl and kt =v/ct . The kernels Uij (j, x), Tij (j, x) are O(ln r) and O(1/r)
singular, respectively.

The value of (2×2) matrix cij (j) depends on the position of j and the
smoothness of the boundary.

3.2.  

Displacements and tractions along the boundary are approximated with
quadratic elements in the same way as for the scalar quantities (pressure and
fluxes) described in the previous section.

The geometry of the element can also be considered as quadratic and
represented by the nodal co-ordinates and the same interpolation functions fn (z)
used for the displacement and traction components.

The only difference between the present inplane discretisation process and that
in the previous scalar problem is that the interpolation is now done independently
for each component of the boundary displacement or traction, while in the fluid
field only one component exists.
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The discretised boundary integral equation at node j� can now be written as
follows

cij (j�)uj (j�)+ s
EL

l=1

s
3

n=1 6−g
+1

−1

Tij (j�, x(z))fn (z)Jl (z) dz7un
j

= s
EL

l=1

s
3

n=1 6−g
+1

−1

Uij (j�, x(z))fn (z)Jl (z) dz7tn
j . (12)

The same Gaussian numerical procedure as in the previous section can be used
to calculate the integral on every boundary element.

Equation (7a) applied on Ge and equation (12) applied on G represent the
uncoupled system of 3NB+2NC equations with the 4NB unknown pressures,
fluxes and components of tractions on Ge and 2NB+2NC components of
displacements on G. They can be written in matrix form as

Hep−Geq= pinc ,

Hiu−Git= 0. (13)

The vectors p, q and u, t contain the external pressures, fluxes and, the internal
displacements and tractions, respectively.

NB denotes the number of nodes on Ge and NC the number of nodes on Gi .
The final algebraic set of equations is obtained adding the boundary conditions
(10) on Ge , with the further condition t=0 on Gi and dividing the whole boundary
into three-noded quadratic isoparametric elements:

He 0 0 −Ge 0 p pinc

0 Hi
GeGe

Hi
GeGi

0 −Gi
GeGe

uGe 0

0 Hi
GiGe

Hi
GiGi

0 −Gi
GiGe

uGi = 0 .G
G

G

G

G

K

k

G
G

G

G

G

L

l

g
G

G

G

G

F

f

h
G

G

G

G

J

j

g
G

G

G

G

F

f

h
G

G

G

G

J

j
0 rev

2Nt 0 −I 0 q 0

N 0 0 0 I tGe 0

The submatrix N collects the components of the inward normals on Ge , and I
is the identity matrix.

The final matrix is more ill-conditioned than the previous problem whenever
material parameters are used. Such a combination is sometimes referred to as
weakly coupled since it represents the merger of two physically different sets of
equations. The fact that the interface continuity provides coupling only in the
normal direction could contribute to this weak coupling.

The solution of the combined system has therefore to incorporate appropriate
scaling and use at least double precision computation.

The integration process is analogous to that used in the previous scalar problem.
The fundamental solutions are decomposed into their static and dynamic parts,
to isolate the singularity. Hi and Gi are calculated by Gaussian quadrature with
16 points when the source point does not belong to the integration element. The
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diagonal term of the Hi matirx is evaluated together with the cij (j�) coefficient by
applying the static rigid body condition (keeping in mind that the singularity of
the dynamic fundamental solution is the same as that of the static one). The
singular term of the G matrix can be evaluated using the same procedure as the
previous problem; the only difference is that the kernel to be integrated has some
more terms than in the scalar problem.

3.3.  

In the examples presented here, the dimensions and properties of fluid and
scatterer are the same as the previous scalar problem. The elastic scatterer has
cylindrical shape and is immersed in an infinite fluid carrying an incoming incident
wave. The properties of the fluid and solid are given in Table 1.

In order to check the accuracy of the coupled elastic solid–fluid BEM
formulation, some test examples are considered for which analytical solutions are
available. Figures 11 and 12 compare the analytical and boundary element farfield
coefficients in the cases keR=1, 3, 5, 10.

For this problem, an analytical solution can be obtained in the presence of a
central cavity. Following reference [30], but modifying the compressive and
transverse waves inside the solid, we have

u=9f+9×c,

f= s
a

m=0

omimamJm (k1r) cos (mu)+ s
a

m=0

omimcmHm (k1r) cos (mu),

c= s
a

m=0

omimbmJm (k2r) sin (mu)+ s
a

m=0

omimdmHm (k2r) sin (mu).

It is possible to obtain the scattering pressure on the external circle as the sum
of a series in which the mth term involves the resolution of a 5×5 (and not 3×3)
system of linear equations: the matrix coefficients are in terms of the Bessel
functions of the first and third kind, of order m.

The first 25 terms of the series solution and 20 terms of the Bessel function
expansions were taken into account in order to obtain a satisfactory stable
analytical solution.

The examples show that there is good agreement between the boundary element
method and the analytical solution. In the case keR=1, 8+8 elements on Ge *Gi

are enough to obtain a numerical solution with an error smaller than 1%, while
16+8, 20+8 and 28+8 elements are necessary to obtain the same precision in
the cases keR=3, 5, 10. The increasing number of elements is due to an increased
variation in the solution requiring finer meshes.

The comparison between Figures 3(a), 11(a) and between Figures 4(a), 12(b)
show the difference of behaviour in the scattered response on the external circle
of the two modes respectively for keR=1 and keR=10.
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In Figures 13–18 the scattering cross-section is diagrammed versus the incident
angle for keR=1, 5, 10 and for different sizes and positions of the internal cavity.

For all the wave numbers considered, the results show a lower sensitivity
compared to the results of fluid–fluidlike scatterer, both with respect to the size
and the position of the internal cavity.

In the case keR=1, it appears from Figure 13 that the difference, in scattering
cross-section, between the solid without the cavity and with the cavity becomes
too small (0·01%) when the size of the cavity is 1–0·5% of the cylinder’s size.

In the cases keR=5, 10, as expected, the sensitivity is higher and the above
value is of a order 1–5%.

The same behaviour is noticed with respect to the position of the cavity, but
the minimum difference in scattering cross-section reaches higher values (0·1–0·2%
for keR=1 and up to 10% in the other cases).

The sensitivity could be improved by amplifying the incident pressure; the
examples shown, in fact, all refer to an incident acoustic amplitude of 60 dB.

4. CONCLUSIONS

The application of the boundary element method to two different coupled
problems for the analysis of the interaction of a plane sound wave with a cylinder
immersed in an inviscid fluid was presented. An internal boundary was considered
inside the scatterer.

In the first part, the cylinder was modelled by the Helmholtz equation, i.e., it
was supposed not to be able to support shear waves, while in the second part, the
Navier–Cauchy equation was used to describe the obstacle. In both models,
continuity of the normal components of velocities and equilibrium of the tractions
were enforced at the interface between the two fields. The method was shown to
be accurate for both problems.

Numerical examples were given for different sizes and positions of the internal
boundary. In both models, the method was able to characterize the internal cavity
by measurements for different incident angles.

The solution was shown to be more sensitive in the case in which the scatterer
was unable to support shear waves. The differences are essentially due to the
different physical models used to describe the scatterer: the elastic field is more
rigid and therefore less influenced by the load represented by the incident wave.
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